Gestão & Produção
https://www.gestaoeproducao.com/article/doi/10.1590/1806-9649-2024v31e1024
Gestão & Produção
Original Article

Performance evaluation of an emergency department in Rio de Janeiro: a hybrid approach using Discrete Events Simulation and Data Envelopment Analysis

Avaliação de desempenho do atendimento em uma emergência hospitalar do Rio de Janeiro: uma abordagem híbrida por meio de Simulação de Eventos Discretos e Análise Envoltória de Dados

Luís Filipe Azevedo de Oliveira; Igor Tona Peres; Bianca Menezes Araujo

Downloads: 1
Views: 392

Abstract

Abstract: The efficiency and quality of the emergency department are paramount to ensure that patients receive immediate and appropriate care. Issues such as lengthy waiting times, critical resource management and allocation, and patient scheduling are linked to increased morbidity and mortality, particularly among the elderly and vulnerable populations. This study aims to assess the performance of an emergency department hospital in Rio de Janeiro based on the analysis of resource utilization and queue performance. The methodology encompassed the development of the emergency macro-process, a preliminary statistical analysis of the collected data, and discrete event simulation under different demand conditions. The study found that the average length of stay in the emergency department was 58.12 minutes, potentially increasing to 104.58 minutes under a 15% demand stress. Improvement scenarios were tested, and their efficiencies were measured using data envelopment analysis in an output-oriented and constant return to scale model. The sensitivity analysis revealed that the proposed performance enhancements could make the hospital more responsive to demand peaks and emergencies, ensuring greater resilience and better resource utilization under adverse conditions.

Keywords

Discrete Events Simulation, DES, Data Envelopment Analysis, DEA, Emergency

Resumo

Resumo: A eficiência e a qualidade do setor de emergência são essenciais para garantir sua segurança e integridade dos pacientes. Problemas como espera prolongada, gestão e alocação de recursos críticos estão associados ao aumento da morbidade e mortalidade dos pacientes, especialmente entre a população em situações de risco. Este trabalho avalia o desempenho de uma emergência hospitalar localizado no Rio de Janeiro/RJ, baseando-se na utilização dos seus recursos e desempenho de filas. A metodologia inclui o desenvolvimento do macroprocesso da emergência, análise estatística preliminar dos dados e modelo de simulação de eventos discretos sobre diferentes condições de demandas. O tempo médio de permanência na emergência é de 58,12 minutos nos meses de maior demanda e passaria para 104,58 minutos, diante de um estresse de 15%. Diferentes cenários de melhorias foram testados e suas eficiências foram mensuradas por meio de análise envoltória de dados, num modelo que considera orientação ao output e retorno de escala constantes. A análise de sensibilidade realizada em um dos cenários eficientes revelou que o desempenho proposto pode tornar o hospital mais responsivo a picos de demanda e situações emergenciais. Isso garante ao hospital maior resiliência e um melhor aproveitamento dos recursos em condições adversas.

Palavras-chave

Simulação de Eventos Discretos, SED, Análise Envoltória de Dados, DEA, Emergências

References

Aringhieri, R., Bruni, M. E., Khodaparasti, S., & van Essen, J. T. (2017). Emergency medical services and beyond: addressing new challenges through a wide literature review. Computers & Operations Research, 78, 349-368. http://doi.org/10.1016/j.cor.2016.09.016.

Azadeh, A., Moghaddam, M., Asadzadeh, S. M., & Negahban, A. (2011). An integrated fuzzy simulation-fuzzy data envelopment analysis algorithm for job-shop layout optimization: the case of injection process with ambiguous data. European Journal of Operational Research, 214(3), 768-779. http://doi.org/10.1016/j.ejor.2011.05.015.

Azadeh, A., Motevali Haghighi, S., & Asadzadeh, S. M. (2014). A novel algorithm for layout optimization of injection process with random demands and sequence dependent setup times. Journal of Manufacturing Systems, 33(2), 287-302. http://doi.org/10.1016/j.jmsy.2013.12.008.

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078-1092. http://doi.org/10.1287/mnsc.30.9.1078.

Boyle, L. M., Currie, C., Fernandez, C. L., Nguyen, L., & Halpenny, C. (2023). A discrete event simulation model of a hospital for prediction of the impact of delayed discharge. In The OR Society 11th Simulation Workshop: SW23: Proceedings (pp. 240-249). Southampton: The OR Society. http://doi.org/10.36819/SW23.029.

Brailsford, S. C., Eldabi, T., Kunc, M., Mustafee, N., & Osorio, A. F. (2019). Hybrid simulation modelling in operational research: a state-of-the-art review. European Journal of Operational Research, 278(3), 721-737. http://doi.org/10.1016/j.ejor.2018.10.025.

Brasil. (2018, 15 de agosto). Lei nº 13.709, de 14 de agosto de 2018. Lei Geral de Proteção de Dados Pessoais (LGPD). Brasília, DF: Diário Oficial da República Federativa do Brasil (seção 1, nº 157, pp. 55-58). Retrieved in 2024, May 22, from https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm

Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. http://doi.org/10.1016/0377-2217(78)90138-8.

Chinosi, M., & Trombetta, A. (2012). BPMN: an introduction to the standard. Computer Standards & Interfaces, 34(1), 124-134. http://doi.org/10.1016/j.csi.2011.06.002.

Chwif, L., & Medina, A. C. (2014). Modelagem e simulação de eventos discretos: teoria e aplicações (4ª ed.). São Paulo: Elsevier Brasil.

Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA): thirty years on. European Journal of Operational Research, 192(1), 1-17. http://doi.org/10.1016/j.ejor.2008.01.032.

Cook, W. D., Tone, K., & Zhu, J. (2014). Data envelopment analysis: prior to choosing a model. Omega, 44, 1-4. http://doi.org/10.1016/j.omega.2013.09.004.

Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data Envelopment Analysis: a comprehensive text with models, applications, references and DEA-solver software (2nd ed.). New York: Springer.

Currie, C. S. M., & Cheng, R. C. H. 2016. A practical introduction to analysis of simulation output data. In 2016 Winter Simulation Conference (pp. 118-132), Washington. New York: IEEE. http://doi.org/10.1109/WSC.2016.7822084.

De Roock, E., & Martin, N. (2022). Process mining in healthcare: an updated perspective on the state of the art. Journal of Biomedical Informatics, 127, 103995. http://doi.org/10.1016/j.jbi.2022.103995. PMid:35077900.

Dev, N. K., Shankar, R., & Debnath, R. M. (2014). Supply chain efficiency: a simulation cum DEA approach. International Journal of Advanced Manufacturing Technology, 72(9-12), 1537-1549. http://doi.org/10.1007/s00170-014-5779-6.

Doudareva, E., & Carter, M. (2022). Discrete event simulation for emergency department modelling: a systematic review of validation methods. Operations Research for Health Care, 33, 100340. http://doi.org/10.1016/j.orhc.2022.100340.

Egilmez, G., Sormaz, D., & Gedik, R. (2018). A Project-based learning approach in teaching simulation to undergraduate and graduate students. In ASEE Annual Conference & Exposition (pp. 1-10), Salt Lake City. Washington, D.C.: ASEE. http://doi.org/10.18260/1-2--29716.

Fogliatti, M. C., & Matos, N. M. C. (2007). Teoria de filas (1ª ed.). Rio de Janeiro: Interciência.

Fone, D., Hollinghurst, S., Temple, M., Round, A., Lester, N., Weightman, A., Roberts, K., Coyle, E., Bevan, G., & Palmer, S.(2003). Systematic review of the use and value of computer simulation modelling in population health and health care delivery. J Public Health Med., 25(4), p. 325-335. https://doi.org/10.1093/pubmed/fdg075.

Garcia, C. S., Meincheim, A., Faria, E. R., Jr., Dallagassa, M. R., Sato, D. M. V., Carvalho, D. R., Santos, E. A. P., & Scalabrin, E. E. (2019). Process mining techniques and applications: a systematic mapping study. Expert Systems with Applications, 133(1), 260-295. http://doi.org/10.1016/j.eswa.2019.05.003.

Giacomo, G., Dumas, M., Maggi, F. M., & Montali, M. (2015). Declarative process modeling in BPMN. In J. Zdravkovic, M. Kirikova & P. Johannesson (Eds.), Advanced Information Systems Engineering (pp. 84-100). Cham: Springer. http://doi.org/10.1007/978-3-319-19069-3_6.

Günal, M. M., & Pidd, M. (2007). Interconnected DES models of emergency, outpatient, and inpatient departments of a hospital. In 2007 Winter Simulation Conference (pp. 1461-1466). Washington, DC. http://doi.org/10.1109/WSC.2007.4419757.

Hart, A. (2001). Mann-Whitney test is not just a test of medians: differences in spread can be important. BMJ, 323(7309), 391-393. http://doi.org/10.1136/bmj.323.7309.391. PMid:11509435.

Hoad, K., Robinson, S., & Davies, R. (2008). Automating warm-up length estimation. In Winter Simulation Conference (pp. 532-540), Miami. New York: IEEE. http://doi.org/10.1109/WSC.2008.4736110.

Hoad, K., Robinson, S., & Davies, R. (2010). Automating warm-up length estimation. The Journal of the Operational Research Society, 61(9), 1389-1403. http://doi.org/10.1057/jors.2009.87.

Hosseini, Z., Navazi, F., Siadat, A., Memari, P., & Tavakkoli-Moghaddam, R. (2019). A tailored fuzzy simulation integrated with a fuzzy DEA method for a resilient facility layout problem: a case study of a refrigerator injection process. IFAC-PapersOnLine, 52(13), 541-546. http://doi.org/10.1016/j.ifacol.2019.11.214.

Jarvis, P. R. E. (2016). Improving emergency department patient flow. Clinical and Experimental Emergency Medicine, 3(2), 63-68. http://doi.org/10.15441/ceem.16.127. PMid:27752619.

Keshtkar, L., Rashwan, W., Abo-Hamad, W., & Arisha, A. (2020). A hybrid system dynamics, discrete event simulation and data envelopment analysis to investigate boarding patients in acute hospitals. Operations Research for Health Care, 26, 100266. http://doi.org/10.1016/j.orhc.2020.100266.

Kleijnen, J. P. (1995). Verification and validation of simulation models. European Journal of Operational Research, 82(1), 145-162. http://doi.org/10.1016/0377-2217(94)00016-6.

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583-621. http://doi.org/10.1080/01621459.1952.10483441.

Liu, S., Li, Y., Triantis, K. P., Xue, H., & Wang, Y. (2020). The diffusion of discrete event simulation approaches in health care management in the past four decades: a comprehensive review. MDM Policy & Practice, 5(1), 2381468320915242. http://doi.org/10.1177/2381468320915242. PMid:32551365.

Liu, J. S., Lu, L. Y. Y., Lu, W.-M., & Lin, B. J. Y. (2013). Data envelopment analysis 1978-2010: a citation-based literature survey. Omega, 41(1), 3-15. http://doi.org/10.1016/j.omega.2010.12.006

Macal, C. (2016). Everything you need to know about agent-based modelling and simulation. Journal of Simulation, 10(2), 144-156. http://doi.org/10.1057/jos.2016.7.

Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18(1), 50-60. http://doi.org/10.1214/aoms/1177730491.

Marchesi, J. F., Hamacher, S., & Fleck, J. L. (2020). A stochastic programming approach to the physician staffing and scheduling problem. Computers & Industrial Engineering, 142, 106281. http://doi.org/10.1016/j.cie.2020.106281.

Marlin, B., & Sohn, H. (2016). Using DEA in conjunction with designs of experiments: an approach to assess simulated futures in the Afghan educational system. Journal of Simulation, 10(4), 272-282. http://doi.org/10.1057/jos.2015.14.

Mohiuddin, S., Busby, J., Savović, J., Richards, A., Northstone, K., Hollingworth, W., Donovan, J. L., & Vasilakis, C. (2017). Patient flow within UK emergency departments: a systematic review of the use of computer simulation modelling methods. BMJ Open, 7(5), e015007. http://doi.org/10.1136/bmjopen-2016-015007. PMid:28487459.

Monazzam, N., Alinezhad, A., & Adibi, M. A. (2022). Simulation-based optimization using DEA and DOE in production systems. Scientia Iranica, 29(6), 3470-3488. http://doi.org/10.24200/sci.2021.55499.4253.

Nance, R. E. (1981). The time and state relationships in simulation modelling. Communications of the ACM, 24(4), 173-179. http://doi.org/10.1145/358598.358601.

Navazi, F., Tavakkoli-Moghaddam, R., & Memari, P. (2019). Layout optimization of injection process by considering integrated resilience engineering: a fuzzy-DEA approach. International Journal of Modelling and Simulation, 41(1), 52–66. https://doi.org/10.1080/02286203.2019.1670325.

Norouzian-Maleki, P., Izadbakhsh, H., Saberi, M., Hussain, O., Jahangoshai Rezaee, M., & GhanbarTehrani, N. (2022). An integrated approach to system dynamics and data envelopment analysis for determining efficient policies and forecasting travel demand in an urban transport system. Transportation Letters, 14(2), 157-173. http://doi.org/10.1080/19427867.2020.1839716.

Ortíz-Barrios, M. A., & Alfaro-Saíz, J.-J. (2020). Methodological approaches to support process improvement in emergency departments: a systematic review. International Journal of Environmental Research and Public Health, 17(8), 2664. http://doi.org/10.3390/ijerph17082664. PMid:32294985.

Ouda, E., Sleptchenko, A., & Simsekler, M. C. E. (2023). Comprehensive review and future research agenda on discrete-event simulation and agent-based simulation of emergency departments. Simulation Modelling Practice and Theory, 129, 102823. http://doi.org/10.1016/j.simpat.2023.102823.

Peres, I. T., Hamacher, S., Cyrino Oliveira, F. L., Barbosa, S. D. J., & Viegas, F. (2019). Simulation of appointment scheduling policies: a study in a bariatric clinic. Obesity Surgery, 29(9), 2824-2830. http://doi.org/10.1007/s11695-019-03898-1. PMid:31037596.

Pham, H. L., Phouratsamay, S.-L., Di Mascolo, M., & Nguyen, B. Q. (2023). Reducing outpatient waiting time: a case study in Vietnamese private hospital. In Proceedings of the International Conference on Control, Automation and Diagnosis (pp. 1-6), Rome. New York: IEEE. http://doi.org/10.1109/ICCAD57653.2023.10152381.

Prado, D., & Yamaguchi, M. 2019. Usando o Arena em simulação (6ª ed.). São Paulo: Falconi.

Roberts, S. D., & Pegden, D. (2017). The history of simulation modeling. In 2017 Winter Simulation Conference (WSC) (pp. 308-323), Las Vegas, NV. New York: IEEE. http://doi.org/10.1109/WSC.2017.8247795.

Sargent, R. G., Goldsman, D. M., & Yaacoub, T. (2016). A tutorial on the operational validation of simulation models. In 2016 Winter Simulation Conference (WSC) (pp. 163-177). Washington, DC. http://doi.org/10.1109/WSC.2016.7822087.

Seiford, L., & Zhu, J. (2002). Modeling Undesirable Factors in Efficiency Evaluation. European Journal of Operational Research, 142(1), 16-20. http://doi.org/10.1016/S0377-2217(01)00293-4.

Student. (1908). The probable error of a mean. Biometrika, 6(1), 1-25. http://doi.org/10.2307/2331554.

Taleb, M., Khalid, R., Ramli, R., & Nawawi, M. K. M. (2023). An integrated approach of discrete event simulation and a non-radial super efficiency data envelopment analysis for performance evaluation of an emergency department. Expert Systems with Applications, 220, 119653. http://doi.org/10.1016/j.eswa.2023.119653.

Tavakoli, M., Tavakkoli-Moghaddam, R., Mesbahi, R., Ghanavati-Nejad, M., & Tajally, A. (2022). Simulation of the COVID-19 patient flow and investigation of the future patient arrival using a time-series prediction model: a real-case study. Medical & Biological Engineering & Computing, 60(4), 969-990. http://doi.org/10.1007/s11517-022-02525-z. PMid:35152366.

Tukey, J. W. (1977). Exploratory data analysis (Vol. 2, pp. 131-160). Reading, MA: Addison-wesley.

van den Bergh, J. V., De Bruecker, P., Beliën, J., De Boeck, L., & Demeulemeester, E. (2013). A three-stage approach for aircraft line maintenance personnel rostering using MIP, discrete event simulation and DEA. Expert Systems with Applications, 40(7), 2659-2668. http://doi.org/10.1016/j.eswa.2012.11.009.

Vanbrabant, L., Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2019). Simulation of emergency department operations: a comprehensive review of KPIs and operational improvements. Computers & Industrial Engineering, 131, 356-381. http://doi.org/10.1016/j.cie.2019.03.025.

Vázquez-Serrano, J. I., Peimbert-García, R. E., & Cárdenas-Barrón, L. E. (2021). Discrete-event simulation modeling in healthcare: a comprehensive review. International Journal of Environmental Research and Public Health, 18(22), 12262. http://doi.org/10.3390/ijerph182212262. PMid:34832016.

Weng, S. J., Tsai, B. S., Wang, L. M., Chang, C. Y., & Gotcher, D. (2011). Using simulation and Data Envelopment Analysis in optimal healthcare efficiency allocations. In Proceedings of the 2011 Winter Simulation Conference (WSC) (pp. 1295-1305), Phoenix, AZ, USA. New York: IEEE. http://doi.org/10.1109/WSC.2011.6147850.

Zeigler, B. P., & Muzy, A. (2017). From Discrete Event Simulation to Discrete Event Specified Systems (DEVS). IFAC-PapersOnLine, 50(1), 3039-3044. http://doi.org/10.1016/j.ifacol.2017.08.672.
 

66e02f51a953953a2d3bc414 gp Articles

Gest. Prod.

Share this page
Page Sections