Performance evaluation of an emergency department in Rio de Janeiro: a hybrid approach using Discrete Events Simulation and Data Envelopment Analysis
Avaliação de desempenho do atendimento em uma emergência hospitalar do Rio de Janeiro: uma abordagem híbrida por meio de Simulação de Eventos Discretos e Análise Envoltória de Dados
Luís Filipe Azevedo de Oliveira; Igor Tona Peres; Bianca Menezes Araujo
Abstract
Keywords
Resumo
Palavras-chave
References
Aringhieri, R., Bruni, M. E., Khodaparasti, S., & van Essen, J. T. (2017). Emergency medical services and beyond: addressing new challenges through a wide literature review.
Azadeh, A., Moghaddam, M., Asadzadeh, S. M., & Negahban, A. (2011). An integrated fuzzy simulation-fuzzy data envelopment analysis algorithm for job-shop layout optimization: the case of injection process with ambiguous data.
Azadeh, A., Motevali Haghighi, S., & Asadzadeh, S. M. (2014). A novel algorithm for layout optimization of injection process with random demands and sequence dependent setup times.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis.
Boyle, L. M., Currie, C., Fernandez, C. L., Nguyen, L., & Halpenny, C. (2023). A discrete event simulation model of a hospital for prediction of the impact of delayed discharge. In
Brailsford, S. C., Eldabi, T., Kunc, M., Mustafee, N., & Osorio, A. F. (2019). Hybrid simulation modelling in operational research: a state-of-the-art review.
Brasil. (2018, 15 de agosto).
Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision making units.
Chinosi, M., & Trombetta, A. (2012). BPMN: an introduction to the standard.
Chwif, L., & Medina, A. C. (2014).
Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA): thirty years on.
Cook, W. D., Tone, K., & Zhu, J. (2014). Data envelopment analysis: prior to choosing a model.
Cooper, W. W., Seiford, L. M., & Tone, K. (2007).
Currie, C. S. M., & Cheng, R. C. H. 2016. A practical introduction to analysis of simulation output data. In
De Roock, E., & Martin, N. (2022). Process mining in healthcare: an updated perspective on the state of the art.
Dev, N. K., Shankar, R., & Debnath, R. M. (2014). Supply chain efficiency: a simulation cum DEA approach.
Doudareva, E., & Carter, M. (2022). Discrete event simulation for emergency department modelling: a systematic review of validation methods.
Egilmez, G., Sormaz, D., & Gedik, R. (2018). A Project-based learning approach in teaching simulation to undergraduate and graduate students. In
Fogliatti, M. C., & Matos, N. M. C. (2007).
Fone, D., Hollinghurst, S., Temple, M., Round, A., Lester, N., Weightman, A., Roberts, K., Coyle, E., Bevan, G., & Palmer, S.(2003). Systematic review of the use and value of computer simulation modelling in population health and health care delivery.
Garcia, C. S., Meincheim, A., Faria, E. R., Jr., Dallagassa, M. R., Sato, D. M. V., Carvalho, D. R., Santos, E. A. P., & Scalabrin, E. E. (2019). Process mining techniques and applications: a systematic mapping study.
Giacomo, G., Dumas, M., Maggi, F. M., & Montali, M. (2015). Declarative process modeling in BPMN. In J. Zdravkovic, M. Kirikova & P. Johannesson (Eds.),
Günal, M. M., & Pidd, M. (2007). Interconnected DES models of emergency, outpatient, and inpatient departments of a hospital. In
Hart, A. (2001). Mann-Whitney test is not just a test of medians: differences in spread can be important.
Hoad, K., Robinson, S., & Davies, R. (2008). Automating warm-up length estimation. In
Hoad, K., Robinson, S., & Davies, R. (2010). Automating warm-up length estimation.
Hosseini, Z., Navazi, F., Siadat, A., Memari, P., & Tavakkoli-Moghaddam, R. (2019). A tailored fuzzy simulation integrated with a fuzzy DEA method for a resilient facility layout problem: a case study of a refrigerator injection process.
Jarvis, P. R. E. (2016). Improving emergency department patient flow.
Keshtkar, L., Rashwan, W., Abo-Hamad, W., & Arisha, A. (2020). A hybrid system dynamics, discrete event simulation and data envelopment analysis to investigate boarding patients in acute hospitals.
Kleijnen, J. P. (1995). Verification and validation of simulation models.
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis.
Liu, S., Li, Y., Triantis, K. P., Xue, H., & Wang, Y. (2020). The diffusion of discrete event simulation approaches in health care management in the past four decades: a comprehensive review.
Liu, J. S., Lu, L. Y. Y., Lu, W.-M., & Lin, B. J. Y. (2013). Data envelopment analysis 1978-2010: a citation-based literature survey.
Macal, C. (2016). Everything you need to know about agent-based modelling and simulation.
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other.
Marchesi, J. F., Hamacher, S., & Fleck, J. L. (2020). A stochastic programming approach to the physician staffing and scheduling problem.
Marlin, B., & Sohn, H. (2016). Using DEA in conjunction with designs of experiments: an approach to assess simulated futures in the Afghan educational system.
Mohiuddin, S., Busby, J., Savović, J., Richards, A., Northstone, K., Hollingworth, W., Donovan, J. L., & Vasilakis, C. (2017). Patient flow within UK emergency departments: a systematic review of the use of computer simulation modelling methods.
Monazzam, N., Alinezhad, A., & Adibi, M. A. (2022). Simulation-based optimization using DEA and DOE in production systems.
Nance, R. E. (1981). The time and state relationships in simulation modelling.
Navazi, F., Tavakkoli-Moghaddam, R., & Memari, P. (2019). Layout optimization of injection process by considering integrated resilience engineering: a fuzzy-DEA approach.
Norouzian-Maleki, P., Izadbakhsh, H., Saberi, M., Hussain, O., Jahangoshai Rezaee, M., & GhanbarTehrani, N. (2022). An integrated approach to system dynamics and data envelopment analysis for determining efficient policies and forecasting travel demand in an urban transport system.
Ortíz-Barrios, M. A., & Alfaro-Saíz, J.-J. (2020). Methodological approaches to support process improvement in emergency departments: a systematic review.
Ouda, E., Sleptchenko, A., & Simsekler, M. C. E. (2023). Comprehensive review and future research agenda on discrete-event simulation and agent-based simulation of emergency departments.
Peres, I. T., Hamacher, S., Cyrino Oliveira, F. L., Barbosa, S. D. J., & Viegas, F. (2019). Simulation of appointment scheduling policies: a study in a bariatric clinic.
Pham, H. L., Phouratsamay, S.-L., Di Mascolo, M., & Nguyen, B. Q. (2023). Reducing outpatient waiting time: a case study in Vietnamese private hospital. In
Prado, D., & Yamaguchi, M. 2019.
Roberts, S. D., & Pegden, D. (2017). The history of simulation modeling. In
Sargent, R. G., Goldsman, D. M., & Yaacoub, T. (2016). A tutorial on the operational validation of simulation models. In
Seiford, L., & Zhu, J. (2002). Modeling Undesirable Factors in Efficiency Evaluation.
Student. (1908). The probable error of a mean.
Taleb, M., Khalid, R., Ramli, R., & Nawawi, M. K. M. (2023). An integrated approach of discrete event simulation and a non-radial super efficiency data envelopment analysis for performance evaluation of an emergency department.
Tavakoli, M., Tavakkoli-Moghaddam, R., Mesbahi, R., Ghanavati-Nejad, M., & Tajally, A. (2022). Simulation of the COVID-19 patient flow and investigation of the future patient arrival using a time-series prediction model: a real-case study.
Tukey, J. W. (1977).
van den Bergh, J. V., De Bruecker, P., Beliën, J., De Boeck, L., & Demeulemeester, E. (2013). A three-stage approach for aircraft line maintenance personnel rostering using MIP, discrete event simulation and DEA.
Vanbrabant, L., Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2019). Simulation of emergency department operations: a comprehensive review of KPIs and operational improvements.
Vázquez-Serrano, J. I., Peimbert-García, R. E., & Cárdenas-Barrón, L. E. (2021). Discrete-event simulation modeling in healthcare: a comprehensive review.
Weng, S. J., Tsai, B. S., Wang, L. M., Chang, C. Y., & Gotcher, D. (2011). Using simulation and Data Envelopment Analysis in optimal healthcare efficiency allocations. In
Zeigler, B. P., & Muzy, A. (2017). From Discrete Event Simulation to Discrete Event Specified Systems (DEVS).