Forecasting electricity generation from renewable sources during a pandemic
Bianca Reichert; Adriano Mendonça Souza; Meiri Mezzomo
Abstract
Keywords
References
Agência Nacional de Energia Elétrica – ANEEL. (2017).
Agência Nacional de Energia Elétrica – ANEEL. (2020).
Akaike, H. (1974). A new look at the statistical model identification.
Alsharif, M. H., Younes, M. K., & Kim, J. (2019). Time series ARIMA model for prediction of daily and monthly average global solar radiation: the case study of Seoul, South Korea.
Aquila, G., Pamplona, E. O., Queiroz, A. R., Rotela, P., Jr., & Fonseca, M. N. (2017). An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience.
Bakhtiar, A., Aslani, A., & Hosseini, S. M. (2020). Challenges of diffusion and commercialization of bioenergy in developing countries.
Baruque, B., Porras, S., Jove, E., & Calvo-Rolle, J. L. (2019). Geothermal heat exchanger energy prediction based on time series and monitoring sensors optimization.
Bhutto, A. W., Bazmi, A. A., Khadija, Q., Harijan, K., Karim, S., & Ahmad, M. S. (2017). Forecasting the consumption of gasoline in transport sector in Pakistan based on ARIMA model.
Box, G. E. P., & Jenkins, G. M. (1970).
Box, G. E., Jenkins, G. M., & Reinsel, G. C. (1994).
Carvalho, M., Delgado, D. B. M., Lima, K. M., Cencela, M. C., Siqueira, C. A., & Souza, D. L. B. (2021). Effects of the COVID-19 pandemic on the Brazilian electricity consumption patterns.
Čepin, M. (2019). Evaluation of the power system reliability if a nuclear power plant is replaced with wind power plants.
Cotia, B. P., Borges, C. L. T., & Diniz, A. L. (2019). Optimization of wind power generation to minimize operation costs in the daily scheduling of hydrothermal systems.
Croonenbroeck, C., & Stadtmann, G. (2019). Renewable generation forecast studies – Review and good practice guidance.
Daioglou, V., Doelman, J. C., Wicke, B., Faaij, A., & van Vuuren, D. P. (2019). Integrated assessment of biomass supply and demand in climate change mitigation scenarios.
Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root.
Empresa de Pesquisa Energética – EPE. (2018).
Ferreira, J. H. I., Camacho, J. R., Malagoli, J. A., & Guimarães, S. C., Jr. (2016). Assessment of the potential of small hydropower development in Brazil.
Ferreira, L. R. A., Otto, R. B., Silva, F. P., Souza, S. N. M., Souza, S. S., & Ando, O. H., Jr. (2018). Review of the energy potential of the residual biomass for the distributed generation in Brazil.
Galvão, J., & Bermann, C. (2015). Crise hídrica e energia: conflitos no uso múltiplo das águas.
González-Aparicio, I., & Zucker, A. (2015). Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain.
Haiges, R., Wang, Y. D., Ghoshray, A., & Roskilly, A. P. (2017). Forecasting electricity generation capacity in malaysia: an auto regressive integrated moving average approach.
Hosseini, S. M., Saifoddin, A., Shirmohammadi, R., & Aslani, A. (2019). Forecasting of CO2 emissions in Iran based on time series and regression analysis.
International Energy Agency – IEA. (2017).
Jadhav, V., Reddy, B. V. C., & Gaddi, G. M. (2017). Application of ARIMA model for forecasting agricultural prices.
Jafarian-Namin, S., Goli, A., Qolipour, M., Mostafaeipour, A., & Golmohammadi, A. M. (2019). Forecasting the wind power generation using Box-Jenkins and hybrid artificial intelligence: a case study.
Khair, U., Fahmi, H., Al-Hakim, S., & Rahim, R. (2017). Forecasting error calculation with mean absolute deviation and mean absolute percentage error.
Kim, H., Kim, S., Shin, H., & Heo, J. H. (2017). Appropriate model selection methods for nonstationary generalized extreme value models.
Kuang, Y., Zhang, Y., Zhou, B., Li, C., Cao, Y., Li, L., & Zeng, L. (2016). A review of renewable energy utilization in islands.
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root.
Lucena, A. F. P., Hejazi, M., Vasquez-Arroyo, E., Turner, S., Köberle, A. C., Daenzer, K., Rochedo, P. R. R., Kober, T., Cai, Y., Beach, R. H., Gernaat, D., van Vuuren, D. P., & van der Zwaan, B. (2018). Interactions between climate change mitigation and adaptation: the case of hydropower in Brazil.
Lucheroni, C., Boland, J., & Ragno, C. (2019). Scenario generation and probabilistic forecasting analysis of spatio-temporal wind speed series with multivariate autoregressive volatility models.
Maciel, P. N., Fo., Alcócer, J. C. A., Pinto, O. R. O., & Dolibaina, L. I. L. (2018). Sustainable energy public policies planning: encouraging the production and use of renewable energies.
Medina, V. (2020).
Mite-León, M., & Barzola-Monteses, J. (2018). Statistical model for the forecast of hydropower production in Ecuador.
Morettin, P. A. (2016).
Noronha, M. O., Zanini, R. R., & Souza, A. M. (2019). The impact of electric generation capacity by renewable and non-renewable energy in Brazilian economic growth.
Olatunji, O., Akinlabi, S., Madushele, N., & Adedeji, P. A. (2019a). Estimation of Municipal Solid Waste (MSW) combustion enthalpy for energy recovery.
Olatunji, O., Akinlabi, S., Madushele, N., & Adedeji, P. A. (2019b). Estimation of the elemental composition of biomass using hybrid adaptive neuro-fuzzy inference system.
Pes, M. P., Pereira, E. B., Marengo, J. A., Martins, F. R., Heinemann, D., & Schmidt, M. (2017). Climate trends on the extreme winds in Brazil.
Qarnain, S. S., Sattanathan, M., Sankaranarayanan, B., & Ali, S. M. (2020). Analyzing energy consumption factors during coronavirus (COVID-19) pandemic outbreak: a case study of residential society.
Ramser, C. A. S., Souza, A. M., Souza, F. M., Veiga, C. P., & Silva, W. V. (2019). The importance of principal components in studying mineral prices using vector autoregressive models: evidence from the Brazilian economy.
Razmjoo, A., Shirmohammadi, R., Davarpanah, A., Pourfayaz, F., & Aslani, A. (2019). Stand-alone hybrid energy systems for remote area power generation.
Reichert, B., & Souza, A. M. (2020). Previsão e interação dos preços da celulose brasileira nos mercados interno e externo.
Reichert, B., & Souza, A. M. (2021). Interrelationship simulations among Brazilian electric matrix sources.
Renn, O., & Marshall, J. P. (2016). Coal, nuclear and renewable energy policies in Germany: from the 1950s to the “Energiewende”.
Saheli, M. A., Fazelpour, F., Soltani, N., & Rosen, M. A. (2019). Performance analysis of a photovoltaic/wind/diesel hybrid power generation system for domestic utilization in winnipeg, manitoba, Canada.
Salles, A. A., & Campanati, A. B. M. (2019). The relevance of crude oil prices on natural gas pricing expectations: a dynamic model based empirical study.
Senna, V., & Souza, A. M. (2016). Assessment of the relationship of government spending on social assistance programs with Brazilian macroeconomic variables.
Shen, Z., & Ritter, M. (2016). Forecasting volatility of wind power production.
Silva, A. R., Pimenta, F. M., Assireu, A. T., & Spyrides, M. H. C. (2016). Complementarity of Brazil׳s hydro and offshore wind power.
Souza, F. M. (2016).
Uddin, M. N., Taweekun, J., Techato, K., Rahman, M. A., Mofijur, M., & Rasul, M. G. (2019). Sustainable biomass as an alternative energy source: bangladesh perspective.