Proposed model of analysis of the perception of the relative importance of Critical Success Factors (CSF) in the civil construction industry (CCI) using Artificial Neural Networks (ANNs): application in the academic universe
Mauro Luiz Erpen; André Luiz Aquere de Cerqueira e Souza; Clóvis Neumann; Maria Cristina Bueno Coelho
Abstract
Keywords
References
Abourizk, S. M., & Wales, R. J. (1993). Incorporating weather effects in project simulation. In
Abourizk, S., Knowles, P., & Hermann, U. (2001). Estimating labor productivity rates for industrial construction activities.
Apanaviciene, R., & Daugeliene, A. (2011). New classification of construction companies: overhead costs aspect.
Apanavičienė, R., & Juodis, A. (2003). Construction projects management effectiveness modelling with neural networks.
Appolinário, F. (2007).
Asgari, H., Odeshi, A., Hosseinkhani, K., & Mohammadi, M. (2018). On dynamic mechanical behavior of additively manufactured AlSi10Mg_200C.
Barros, V. P. A. (2018).
Biondi, L., Gomes, E., Mello, J., & Meza, L. (2004). Redes neurais artificiais para estimativa de custos de construção civil. In
Blanning, R. W. (1975). The construction and implementation of metamodels.
Casarotto, F., Favero, N., & Castro, J. S. (2009).
Cervo, A. L., & Bervian, A. (1983).
Chao, L. C., & Skibniewski, M. J. (1994). Estimating construction productivity: neuralnetwork-based approach.
Chua, D. K. H., Kog, Y. C., & Loh, P. K. (1999). Critical success factors for different project objectives.
Chua, D. K. H., Loh, P. K., Kog, Y. C., & Jaselskis, E. J. (1997). Neural networks for construction project success.
Colauto, R. D., Gonçalves, C. M., Beuren, I. M., & Santos, N. (2004). Os fatores críticos de sucesso como suporte ao sistema de inteligência competitiva: o caso de uma empresa brasileira.
Cooke-Davies, T. (2002). The “real” success factors on projects.
Costantino, F., Di Gravio, G., & Nonino, F. (2015). Project selection in project portfolio management: an artificial neural network model based on critical success factors.
Crocker, L., & Algina, J. (1986).
Dalmoro, M., & Vieira, K. M. (2013). Dilemas na construção de escalas Tipo Likert: o número de itens e a disposição influenciam nos resultados?
Doloi, H. (2012). Cost overruns and failure in project management - understanding the roles of key stakeholders in construction projects.
El-Gohary, K., & Aziz, R. (2014). Factors influencing construction labor productivity in Egypt.
Elwakil, E., Ammar, M., Zayed, T., Mahmoud, M., Eweda, A., & Mashhour, I. (2009). Investigation and modeling of critical success factors in construction organizations. In
Enshassi, A., Mohamed, S., & Mayer, E. (2007). Factors affecting labor productivity in building projects in the Gaza Strip.
Fortune, J., & White, D. (2006). Framing of project critical success factors by a systems model.
Foucquier, A., Robert, S., Suard, F., Stéphan, L., & Jay, A. (2013). State of the art in building modeling and energy performances prediction: a review.
França, D. C. (2016).
Freitag, A. E. B. (2015).
Garson, D. G. (1991). Interpreting neural-network connection weights.
Gorsuch, R. L. (1983).
Guadagnoli, E., & Velicer, W. F. (1988). Relation of sample size to the stability of component patterns.
Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm.
Hair, J. F., Jr., Black, W., Babin, B. J., & Anderson, R. E. (1998).
Haykin, S. (2001).
Holohan, J. (1992). Use of executive information system in measuring business performance.
Jarkas, A., & Bitar, G. (2012). Factors affecting construction labor productivity in Kuwait.
Jiménez, M. J., Enríquez, R., Lopez, L. C., & Heras, M. R. (2013). Data analysis methods for building energy performance characterization: context and CIEMAT experiences in applications to test campaigns in warm sunny weather In
Jordão, R. V. D., Pelegrini, F. G., Jordão, A. C.T., & Jeunon, E. (2015). Fatores críticos na gestão de projetos: um estudo de caso numa grande empresa latino-americana de classe mundial.
Kalogirou, S. A. (2001). Artificial neural networks in renewable energy systems applications: a review. Renewable and Sustainable Energy Reviews, 5(4), 373-401.
Karshenas, S., & Feng, X. (1992). Application of neural networks in earthmoving equipment production estimating. In
Kikuti, K. (2016).
Knowles, R. P. (1997).
Kog, Y. C., & Loh, P. K. (2012). Critical success factors for different components of construction projects.
Laros, J. A. (2012). O uso da análise fatorial: algumas diretrizes para pesquisadores. In L. Pasquali (Ed.),
Leite, A. C. P. (2018).
Likert, R. (1932). A technique for the measurement of attitudes.
Lopes, D. (2009).
Lorenzi, A., Silva, B. V., Barbosa, M. P., & Silva, L. C. P., Fo. (2017). Aplicação de redes neurais artificiais na predição da aderência aço-concreto em ensaios do tipo pull-out.
Malhotra, N. K. (2001).
Meisel, W. S., & Collins, D. C. (1973). Repro-modeling: an approach to efficient model utilization and interpretation.
Melo, A. P. (2012).
Mori, L. M. (2008).
Morioka, S., & Carvalho, M. M. (2014). Análise de fatores críticos de sucesso de projetos: um estudo de caso no setor varejista.
Moselhi, O., Hegazy, T., & Fazio, P. (1991). Neural network as tool in construction.
Paschoal, M. S. (2014).
Pinto, J. K., & Slevin, D. P. (1988). Critical success factors across the project life cycle.
Portas, P., & Abourizk, S. (1997). Neural network model for estimating construction productivity.
Ribeiro, A. J. A., Silva, C. A. U., & Barroso, S. H. A. (2018). Metodologia de baixo custo para mapeamento geotécnico aplicado à pavimentação.
Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The rprop algorithm. In
Saqib, M., Farooqui, R. U., & Lodi, S. H. (2008). Assessment of critical success factors for construction projects in Pakistan. In
Silva, A. N. R., Ramos, R. A. R., Souza, L. C. L., Rodrigues, D. S., & Mendes, J. F. G. (2004).
Sonmez, R., & Rowings, J. E. (1998). Construction labour productivity modeling with neural networks.
Tam, C. M., Tong, T. K. L., & Tse, S. L. (2002). Artificial neural networks model for predicting excavator productivity.
Tsiga, Z., Emes, M. & Smith, A. (2016). Critical success factors for projects in the space sector.
Valença, M. J. S. & Ludemir, T. B. (2007). Explicando a relação entre as variáveis de uma rede neural: Iluminando a “Caixa Preta”. In
Waziri, B. S., Bala, K., & Bustani, S. A. (2017). Artificial neural networks in construction engineering and management.
Yi, W., & Chan, A. P. (2013). Optimizing worke-rest schedule for construction rebar workers in hot and humid environment.
Zayed, T., Elwakil, E., & Ammar, M. (2012). A framework for performance assessment of organizations in the construction industry.