A program to find all pure Nash equilibria in games with n-players and m-strategies: the Nash Equilibria Finder – NEFinder
Renan Henrique Cavicchioli Sugiyama; Alexandre Bevilacqua Leoneti
Abstract
Keywords
Referências
Angeloni, M. T. (2003). Elementos intervenientes na tomada de decisão.
Dickhaut, J., & Kaplan, T. (1993). A program for finding Nash equilibria.
Egesdal, M., Jordana, A. G., Prause, M., Savani, R., & Stengel, B. V. (2014).
Echenique, F. (2007). Finding all equilibria in games of strategic complements.
Fylstra, D., Lasdon, L., Watson, J., & Waren, A. (1998). Design and use of the Microsoft Excel Solver.
Game Theory Society. (2019). Retrieved in 2014, October 15, from
Garey, M. R., & Johnson, D. S. (1977). Computers and intractability: A guide to the theory of NP-completeness.
Govindan, S., & Wilson, R. (2003). A global Newton method to compute Nash equilibria.
Govindan, S., & Wilson, R. (2004). Computing Nash equilibria by iterated polymatrix approximation.
Herings, P. J. J., & Peeters, R. J. (2001). A differentiable homotopy to compute Nash equilibria of n-person games.
Krawczyk, J., & Zuccollo, J. (2006).
Knight, V. A., & Campbell, J. (2018). Nashpy: A Python library for the computation of Nash equilibria.
Lemke, C., & Howson, J. Jr (1964). Equilibrium points of bimatrix games.
Luce, R. D., & Raiffa, H. (1957).
McKelvey, R. D., McLennan, A. M., & Turocy, T. L. (2006).
Langlois, J. P. (2005)
Myerson, R. (1996). John Nash’s Contribution to Economics.
Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007).
Osborne, M. J., & Rubinstein, A. (1994).
Parsons, S., & Wooldridge, M. (2002). Game theory and decision theory in multi-agent systems.
Porter, R., Nudelman, E., & Shoham, Y. (2008). Simple search methods for finding a Nash equilibrium.
Sanfey, A. G. (2007). Social decision-making: insights from game theory and neuroscience.
Spaniel, W. (2014).