Gestão & Produção
https://www.gestaoeproducao.com/article/doi/10.1590/0104-530X1810-15
Gestão & Produção
Article

Eficiência dos aeroportos internacionais brasileiros: uma análise envoltória de dados com bootstrap

Efficiency of Brazilian international airports: applying the bootstrap data envelopment analysis

Ana Elisa Périco; Naja Brandão Santana; Daisy Aparecida do Nascimento Rebelatto

Downloads: 0
Views: 1194

Resumo

Resumo: A eficiência adquiriu maior relevância entre as organizações no cenário de mercados abertos, que teve início no Brasil por volta dos anos 1990. O objetivo deste artigo foi analisar, por envoltória de dados com bootstrap, a eficiência dos aeroportos brasileiros, utilizando as bases de dados da Agência Nacional de Aviação Civil (ANAC) e da Empresa Brasileira de Infraestrutura Aeroportuária (INFRAERO) de 2010, 2011 e 2012. Uma regressão múltipla foi utilizada para validar as variáveis do modelo proposto. Nesse modelo, a medida utilizada para representar o desempenho dos aeroportos foi a quantidade de passageiros processados (variável dependente); para as variáveis que determinam o desempenho (variáveis independentes) foram utilizados: número de pistas, número de balcões de check-in, número de estacionamento de aeronaves e área de passageiros. A partir de então, a técnica Análise Envoltória de Dados foi aplicada para os 16 aeroportos internacionais brasileiros, em abordagem operacional. Para corrigir os valores de eficiência encontrados, tendo em vista o erro aleatório inerente aos dados, aplicou-se uma abordagem da técnica de bootstrap. Os resultados encontrados apontam que a grandeza de um aeroporto não foi determinante para atribuir eficiência, embora seja critério relevante para impulsionar melhorias no seu desempenho. Convém salientar, também, que a utilização dos recursos (inputs) para o alcance do produto (output) foi o critério mais relevante na busca do bom desempenho e da eficiência aeroportuária no estudo aqui apresentado. Nesse sentido, o aeroporto de Curitiba, na Região Sul do país, foi classificado como o mais eficiente em todos os períodos, e os aeroportos do Galeão (Rio de Janeiro) e Manaus (Amazonas) como os menos eficientes.

Palavras-chave

Aeroportos brasileiros internacionais, Análise envoltória de dados, Eficiência operacional

Abstract

Abstract: In the setting of open market organizations, efficiency has gained greater relevance, which in Brazil began around the 1990s. This paper applies the bootstrap data envelopment analysis aiming to study the efficiency of Brazilian airports, using the databases of the Agência Nacional de Aviação Civil (ANAC) and the Empresa Brasileira de Infraestrutura Aeroportuária (INFRAERO), dated of 2010, 2011 and 2012. We used multiple regression to validate the variables of the model. In this model, the measure used to represent the performance of airports was the number of processed passengers (dependent variable); for the variables that determine performance (independent variables) we used: number of runways, number of check-in counters, number of aircraft parking bays and passenger areas. The method was applied to study 16 Brazilian international airports in an operational approach. To correct the efficiency values found, given the inherent random error of the data, a bootstrap technique was applied. The approach showed that an airport’s size is not the determining factor to assign their efficiency. The use of resources to achieve the product was the most relevant criterion to investigate the airport’s good performance and efficiency in this study. The results obtained indicate that the Curitiba Airport is the most efficient. Moreover, the least efficient airports were the Galeão and Manaus Airports.

Keywords

Brazilian International airports, Data envelopment analysis, Operational efficiency

References

Banker, R. D. (1996). Hypothesis tests using data envelopment analysis. Journal of Productivity Analysis, 7(2-3), 139-159. http://dx.doi.org/10.1007/BF00157038.

Banker, R. D., & Natarajan, R. (2004). Statistical tests based on DEA efficiency scores. In W. Cooper, L. Seiford & J. Zhu. Handbook on data envelopment analysis (Vol. 11, pp. 265-298). New York: Kluwer Academic Publishers.

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092. http://dx.doi.org/10.1287/mnsc.30.9.1078.

Barros, C. P., & Dieke, P. U. C. (2008). Measuring the economic efficiency of airports: a Simar-Wilson methodology analysis. Transportation Research Part E, Logistics and Transportation Review, 44(6), 1039-1051. http://dx.doi.org/10.1016/j.tre.2008.01.001.

Berechman, J. (1994). Urban and regional economic impacts of transportation investment: A critical assessment and proposed methodology. Transportation Research Part A, Policy and Practice, 28(4), 351-362. http://dx.doi.org/10.1016/0965-8564(94)90009-4.

Brasil. Agência Nacional de Aviação Civil – ANAC. (2012). Movimento operacional nos principais aeroportos do Brasil. Brasília. Recuperado em 1 de fevereiro de 2013, de http://www2.anac.gov.br/arquivos/pdf/Relatorio_Movimento_Operacional_18fev2012.PDF

Brasil. Agência Nacional de Aviação Civil – ANAC. (2013). Relatório de desempenho operacional dos aeroportos. Brasília. Recuperado em 1 de fevereiro de 2014, de http://www2.anac.gov.br/biblioteca/portarias/2011/Relatorio%20Aeroportos%2014fev.pdf

Charnes, A., Cooper, W., Lewin, A. Y., & Seiford, L. M. (1994). Data envelopment analysis: theory, methodology, and application. Boston: Kluwer Academic Publishers. http://dx.doi.org/10.1007/978-94-011-0637-5.

Curi, C., Gitto, S., & Mancuso, P. (2011). New evidence on the efficiency of Italian Airports: a bootstrapped DEA analysis. Socio-Economic Planning Sciences, 45(2), 84-93. http://dx.doi.org/10.1016/j.seps.2010.11.002.

Empresa Brasileira de Infraestrutura Aeroportuária – INFRAERO. (2013). Brasília. Recuperado em 1 de fevereiro de 2014, de http://www.infraero.gov.br/index.php/br/aeroportos.html

Fernandes, E., & Pacheco, R. R. (2002). Efficient use of airport capacity. Transportation Research Part A, Policy and Practice, 36(3), 225-238. http://dx.doi.org/10.1016/S0965-8564(00)00046-X.

Golany, B., & Roll, Y. (1989). An application procedure for DEA. Omega, 17(3), 237-250. http://dx.doi.org/10.1016/0305-0483(89)90029-7.

Graham, A. (2001). Managing airports: an international perspective. Oxford: Butterworth-Heinemann.

Hausman, J. A. (1978). Specification tests in econometrics. Econometrica, 46(6), 1251-1271. http://dx.doi.org/10.2307/1913827.

Lin, L. C., & Hong, C. H. (2006). Operational performance evaluation of international major airports: an application of data envelopment analysis. Journal of Air Transport Management, 12(6), 342-351. http://dx.doi.org/10.1016/j.jairtraman.2006.08.002.

Lins, M. P. E., & Meza, L. A. (2000). Análise envoltória de dados e perspectivas de integração no ambiente de apoio à decisão. Rio de Janeiro: Editora da COPPE/UFRJ.

Lozano, S., & Gutiérrez, E. (2011). Efficiency analysis and target setting of Spanish airports. Networks and Spatial Economics, 11(1), 139-157. http://dx.doi.org/10.1007/s11067-008-9096-1.

Martin, J. C., & Roman, C. (2006). A benchmarking analysis of Spanish commercial airports: a comparison between SMOP and DEA ranking methods. Networks and Spatial Economics, 6(2), 111-134. http://dx.doi.org/10.1007/s11067-006-7696-1.

Njoh, A. (2009). The development theory of transportation infrastructure examined in the context of Central and West Africa. The Review of Black Political Economy, 36(3-4), 227-243. http://dx.doi.org/10.1007/s12114-009-9044-4.

Norman, M., & Stoker, B. (1991). Data Envelopment Analysis: the assessment of performance. Sussex: John Wiley & Sons.

Oum, T. H., Yan, J., & Yu, C. (2008). Ownership forms matter for airport efficiency: a stochastic frontier investigation of worldwide airports. Journal of Urban Economics, 64(2), 422-435. http://dx.doi.org/10.1016/j.jue.2008.03.001.

Simar, L., & Wilson, P. W. (1998). Sensitivity analysis of efficiency scores: how to bootstrap in nonparametric frontier models. Management Science, 44(1), 49-61. http://dx.doi.org/10.1287/mnsc.44.1.49.

Yang, H. H. (2010). Measuring the efficiencies of Asia-Pacific international airports: parametric and non-parametric evidence. Computers & Industrial Engineering, 59(4), 697-702. http://dx.doi.org/10.1016/j.cie.2010.07.023.

Yoshida, Y., & Fujimoto, H. (2004). Japanese-airport benchmarking with the DEA and endogenous-weight TFP methods: testing the criticism of overinvestment in Japanese regional airports. Transportation Research Part E, Logistics and Transportation Review, 40(6), 533-546. http://dx.doi.org/10.1016/j.tre.2004.08.003.
 

59a036770e88258f7e8ca1a8 gp Articles
Links & Downloads

Gest. Prod.

Share this page
Page Sections