Gestão & Produção
https://www.gestaoeproducao.com/article/doi/10.1590/1806-9649-2024v31e9823
Gestão & Produção
Original Article

Assessment of sustainable performance of the top five Brazilian steel industries using the TOPSIS technique with Gaussian AHP

Avaliação do desempenho sustentável das cinco maiores siderúrgicas brasileiras utilizando a técnica TOPSIS com AHP-Gaussiano

Carlos Alberto Soares Cunha; Igor Macedo de Lima; Gabriel Brito Caldas; Julio Vieira Neto; Luís Alberto Duncan Rangel; Gilson Brito Alves Lima

Downloads: 0
Views: 53

Abstract

Abstract: The Brazilian steel industry holds enormous economic significance, as it produced approximately 32 million steel products in 2022 and exported around 12 million tons to over 100 countries. Based on a 2021 study conducted by the Institute for Applied Economic Research (IPEA), the steel industry contributed 1.9% to the overall national Gross Domestic Product (GDP). Although the steel industry plays a significant role in Brazil's trade balance, it has direct implications on economic, environmental, and social aspects, thereby intersecting with the three fundamental principles of sustainability. This study aims to assess the sustainable performance of the five primary companies by integrating the TOPSIS method with the Gaussian AHP method. The evaluation will be based on indicators derived from the Sustainable Development Goals (GRI) and will utilize sustainability reports from 2019 to 2021. The study demonstrated the feasibility of employing the suggested approach as a means of evaluating the sustainable performance of the five organizations in the steel sector, thus positioning it as a prospective tool for stakeholder analysis.

Keywords

sustainable performance, Brazilian steel companies, TOPSIS, AHP-Gaussian

Resumo

Resumo: A indústria siderúrgica brasileira possui importância ímpar para a economia, uma vez que sua produção, em 2022, girou na ordem de 32 milhões de produtos siderúrgicos e suas exportações, para mais de cem países, chegou ao montante de aproximadamente 12 milhões de toneladas. Segundo estudo de 2021 do Instituto de Pesquisa Econômica Aplicada (IPEA), a siderurgia representou 1,9% do PIB Nacional. Apesar da contribuição para a balança comercial brasileira, a siderurgia afeta diretamente as questões ligadas à economia, ao meio ambiente e ao social interagindo, desta forma, com os três pilares da sustentabilidade. Em razão dessa interconexão, o presente estudo tem por objetivo avaliar o desempenho sustentável das cinco principais empresas através da combinação do método TOPSIS com o método AHP-Gaussiano utilizando indicadores estabelecidos pelo Sustainable Development Goals (GRI), oriundo dos relatórios de sustentabilidade dos anos de 2019 a 2021. O estudo demonstrou a possibilidade de utilização do método proposto como forma de avaliar o desempenho sustentável das cinco organizações do setor siderúrgico tornando-se potencial ferramenta de análise por partes interessadas.

Palavras-chave

desempenho sustentável, siderúrgicas brasileiras, TOPSIS, AHP-Gaussiano

Referências

Azimifard, A., Moosavirad, S. H., & Ariafar, S. (2018). Selecting sustainable supplier countries for Iran’s steel industry at three levels by using AHP and TOPSIS methods. Resources Policy, 57, 30-44. http://dx.doi.org/10.1016/j.resourpol.2018.01.002.

Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051-13069. http://dx.doi.org/10.1016/j.eswa.2012.05.056.

Brasil. Ministry of Industry, Foreign Trade and Services. (2023). Comex Stat Portal, 2023. Retrieved in 2023, September 23, from http://comexstat.mdic.gov.br/pt/geral/105563

Brazilian Steel Institute. (2023). Brazil Steel Databook 2023. Rio de Janeiro: Brazilian Steel Institute. Retrieved in 2023, September 23, from https://acobrasil.org.br/site/wp-content/uploads/2023/07/AcoBrasil_Anuario_2023.pdf

Bucur, A., Dobrotă, G., Oprean-Stan, C., & Tănăsescu, C. (2017). Economic and qualitative determinants of the world steel production. Metals, 7(5), 9. http://dx.doi.org/10.3390/met7050163

Caiado, R. G. G., Lima, G. B. A., Gaviáo, L. O., Quelhas, O. L. G., & Paschoalino, F. F. (2017). Sustainability analysis in electrical energy companies by similarity technique to ideal solution. Revista IEEE América Latina, 15(4), 675-681. http://dx.doi.org/10.1109/TLA.2017.7896394

Campos, L. M. D. S., Sehnem, S., Oliveira, M. D. A. S., Rossetto, A. M., Coelho, A. L. D. A. L., & Dalfovo, M. S. (2013). Relatório de sustentabilidade: perfil das organizações brasileiras e estrangeiras segundo o padrão da Global Reporting Initiative. Gestão & Produção, 20(4), 913-926. http://dx.doi.org/10.1590/S0104-530X2013005000013.

Chakraborty, S. (2022). TOPSIS and Modified TOPSIS: a comparative analysis. Decision Analytics Journal, 2, 100021. https://doi.org/10.1016/j.dajour.2021.100021.

Climate Observatory. (2023). The Greenhouse Gas Emissions and Removals Estimation System (SEEG) Portal, 2023. Retrieved in 2023, September 23, from https://plataforma.seeg.eco.br/?_gl=1*1u92vj1*_ga*OTU4MTIzMTYxLjE3MTA4ODE5NTk.*_ga_XZWSWEJDWQ*MTcxMDg4MTk1OC4xLjEuMTcxMDg4MjM2OC4wLjAuMA

Duan, Y., Han, Z., Zhang, H., & Wang, H. (2021). Research on the applicability and impact of CO2 emission reduction policies on China’s steel industry. International Journal of Climate Change Strategies and Management, 13(3), 352-374. http://dx.doi.org/10.1108/IJCCSM-02-2021-0020

Falsarella, O. M., & Jannuzzi, C. S. C. (2020). Organizational and competitive intelligence and big data: a systemic vision for the organizations’sustainable management. Perspectivas em Ciência da Informação, 25(1), 179-204. http://dx.doi.org/10.1590/1981-5344/3497

Feil, A. A., Amaral, C. C., Walter, E., Bagatini, C. A., Schreiber, D., & Maehler, A. E. (2023). Set of sustainability indicators for the dairy industry. Environmental Science and Pollution Research International, 30(18), 52982-52996. http://dx.doi.org/10.1007/s11356-023-26023-3. PMid:36847943.

Gianicolo, E. A. L., Cervino, M., Russo, A., Singer, S., Blettner, M., & Mangia, C. (2021). Environmental assessment of interventions to restrain the impact of industrial pollution using a quasi-experimental design: limitations of the interventions and recommendations for public health policy. BMC Public Health, 21(1), 1856. http://dx.doi.org/10.1186/s12889-021-11832-3 PMid:34649551.

Global Reporting Initiative - GRI. (2021). News Center of GRI, 2021. All eyes on a sustainable COVID recovery. Retrieved in 2023, September 23, from https://www.globalreporting.org/news/news-center/all-eyes-on-a-sustainable-covid-recovery/

Guedes, É. C., Ribeiro, R. R., & Jeunon, E. E. (2020). Análise da utilização dos indicadores do Global Reporting Initiative (GRI) nos relatórios de sustentabilidade de empresas com atuação em Minas Gerais. Revista Sinapse Múltipla, 9(2), 150-151.

Hamurcu, M., & Eren, T. (2023). Multicriteria decision making and goal programming for determination of electric automobile aimed at sustainable green environment: a case study. Environment Systems & Decisions, 43(2), 211-231. http://dx.doi.org/10.1007/s10669-022-09878-8. PMid:36118127.

He, K., & Wang, L. (2017). A review of energy use and energy-efficient technologies for the iron and steel industry. Renewable & Sustainable Energy Reviews, 70, 1022-1039. http://dx.doi.org/10.1016/j.rser.2016.12.007

Hegab, H., Shaban, I., Jamil, M., & Khanna, N. (2023). Toward sustainable future: Strategies, indicators, and challenges for implementing sustainable production systems. Sustainable Materials and Technologies, 36, e00617. http://dx.doi.org/10.1016/j.susmat.2023.e00617.

Hwang, C.-L., & Yoon, K. (1981). Multiple attribute decision making. Berlin, Heidelberg: Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-48318-9.

Institute for Applied Economic Research - IPEA. (2021). IPEAdata. Retrieved in 2023, September 23, from http://www.ipeadata.gov.br/Default.aspx

Luken, R., & Castellanos-Silveria, F. (2011). Industrial transformation and sustainable development in developing countries. Sustainable Development (Bradford), 19(3), 167-175. http://dx.doi.org/10.1002/sd.434

Milford, R. L., Pauliuk, S., Allwood, J. M., & Müller, D. B. (2013). The roles of energy and material efficiency in meeting steel industry CO2 targets. Environmental Science & Technology, 47(7), 3455-3462. http://dx.doi.org/10.1021/es3031424 PMid:23470090.

Moosa, A., & He, F. (2023). Impact of environmental management practices on corporate sustainability: evidence from the Maldives hospitality industry. International Journal of Emerging Markets, 18(9), 2869-2889. http://dx.doi.org/10.1108/IJOEM-06-2020-0700

Oliveira, R. S. G., Forapani, G., & Pereira, P. D. S. (2022). Responsabilidade Social Universitária: analisando organizações educacionais no contexto de capitalismo neoliberal a partir dos relatórios de sustentabilidade da Global Reporting Initiative. In XI Encontro de Estudos Organizacionais da ANPAD (pp. 1-11). Maringá: Associação Nacional de Pós-Graduação e Pesquisa em Administração - ANPAD.

Paz, T. D. S. R., Santos, M., & Gomes, C. F. S. (2022). Performance sustentável das empresas do setor de saúde: análise a partir da abordagem VFT e dos métodos AHP-Gaussiano e WASPAS. In XLII Encontro Nacional de Engenharia de Produção (pp. 1-12). Foz do Iguaçu: ENEGEP. http://dx.doi.org/10.14488/ENEGEP2022_TN_ST_390_1938_45066.

Pegden, C. D., Shannon, R. E., & Sadowski, R. P. (1995). Introduction to simulation using SIMAN. New York: McGraw-Hill.

Pereira, R. C. A., Silva, O. S. Jr, Mello Bandeira, R. A., Santos, M., Souza Rocha, C. Jr, Castillo, C. D. S., Gomes, C. F. S., Moura Pereira, D. A., & Muradas, F. M. (2023). Evaluation of smart sensors for subway electric motor escalators through AHP-Gaussian method. Sensors (Basel), 23(8), 1. http://dx.doi.org/10.3390/s23084131 PMid:37112474.

Peterson, N. (2016). Introduction to the special issue on social sustainability: Integration, context, and governance. Sustainability, 12(1), 3-7. http://dx.doi.org/10.1080/15487733.2016.11908148

Politis, Y., & Grigoroudis, E. (2022). Incorporating the sustainability concept in the major business excellence models. Sustainability (Basel), 14(13), 1. http://dx.doi.org/10.3390/su14138175

Rossoni, A., Rossoni, H. A. V., & Rodrigues, A. B. (2021). Potencial reutilização dos resíduos provenientes da indústria de ferrossílicio: revisão sistemática e aprofundada da literatura. Revista Ibero-Americana de Ciências Ambientais, 12(10), 385-398. http://dx.doi.org/10.6008/CBPC2179-6858.2021.010.0031.

Saaty, T. L. (1980). The Analytic Hierarchy Process (AHP): Planning, Priority Setting, Resource Allocation. New York: McGraw-Hill International Book Co.

Sadollah, A., Nasir, M., & Geem, Z. W. (2020). Sustainability and optimization: from conceptual fundamentals to applications. Sustainability (Basel), 12(5), 1. http://dx.doi.org/10.3390/su12052027

Santos, M., & Costa, I. P. (2021). Multicriteria decision-making in the selection of warships: a new approach to the ahp method. International Journal of the Analytic Hierarchy Process, 13(1), 147-169. http://dx.doi.org/10.13033/ijahp.v13i1.833

Schoeman, Y., Oberholster, P., & Somerset, V. (2020). Value stream mapping as a supporting management tool to identify the flow of industrial waste: a case study. Sustainability (Basel), 13(1), 91. http://dx.doi.org/10.3390/su13010091

Souza, M. M., Oliveira, A. L. R., & Souza, M. F. (2023). Location of agricultural warehouses based on spatial multicriteria analysis. Revista de Economia e Sociologia Rural, 62(1), e268622. http://dx.doi.org/10.1590/1806-9479.2022.268622

Sridhar, K., & Jones, G. (2013). The three fundamental criticisms of the Triple Bottom Line approach: an empirical study to link sustainability reports in companies based in the Asia-Pacific region and TBL shortcomings. Asian Journal of Business Ethics, 2(1), 91-111. http://dx.doi.org/10.1007/s13520-012-0019-3.

Stojčić, M., Zavadskas, E., Pamučar, D., Stević, Ž., & Mardani, A. (2019). Application of MCDM methods in sustainability engineering: a literature review 2008-2018. Symmetry, 1(3), 350. http://dx.doi.org/10.3390/sym11030350

Toktarova, A., Karlsson, I., Rootzén, J., Göransson, L., Odenberger, M., & Johnsson, F. (2020). Pathways for low-carbon transition of the steel industry: a swedish case study. Energies, 13(15), 1. http://dx.doi.org/10.3390/en13153840

Touzi, N., & Horchani-Naifer, K. (2023). A study on the preparation and characterization of pigment quality from iron-containing waste materials. Environmental Science and Pollution Research. (Preprint).

Usman, M., & Hammar, N. (2021). Dynamic relationship between technological innovations, financial development, renewable energy, and ecological footprint: fresh insights based on the STIRPAT model for Asia Pacific Economic Cooperation countries. Environmental Science and Pollution Research International, 28(12), 15519-15536. http://dx.doi.org/10.1007/s11356-020-11640-z PMid:33241498.

Vallet-Bellmunt, T., Fuertes-Fuertes, I., & Flor, M. L. (2023). Reporting Sustainable Development Goal 12 in the Spanish food retail industry. An analysis based on Global Reporting Initiative performance indicators. Corporate Social Responsibility and Environmental Management, 30(2), 695-707. http://dx.doi.org/10.1002/csr.2382

Vieira, I. L., Silva, E. R., Martini, L. C. Jr, & Mattos, U. A. O. (2020). Pontos positivos e negativos dos relatórios de sustentabilidade no modelo global reporting initiative: revisão da literatura nacional e internacional. Revista Gestão Industrial, 16(2), 21-46. http://dx.doi.org/10.3895/gi.v16n2.10549.

Yoon, K. P., Kim, W. K. (2017). The behavioral TOPSIS. Expert Systems with Applications, 89, 266-272. https://doi.org/10.1016/j.eswa.2017.07.045.
 

661d180ca95395679e325c63 gp Articles

Gest. Prod.

Share this page
Page Sections